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SEMI-INFINITE PROGRAMMING

Hui iIu, Ph.D.
Stanford University, 1989

Abstract

Semi-Infinite programming, that allows for either infinitely many constraints or in-
finitely many variables but not both, is a natural extension of ordinary mathematical pro-
gramming. There are many practical as well as theoretical problems in which the constraints
depend on time or space and thus can be formulated as semi-infinite programs. The focus
of this dissertation is on formulating and solving semi-infinite programming problems. The
main results include:

((1) An algorithm for solving a matrix rescaling problem formulated as a semi-infinite
linear program,',.Sufficient conditions that guarantee finite termination are discussed and

(Omputa-ion-fesults are reported.__ (2) An algorithm for solving a matrix estimation problem equivalent to a semi-infinite
_quadratir r For a specified constant, this algorithm will find an approximate so-

/ution after finitely many iterations, or will tend to an optimal solution in the limit. An
i upper bound on the total number of iterations needed for finding an approximate solution

is given. Computational results are reported.
- (3) A one-phase algorithm for solving a large class of semi-infinite linear programming

problemsj 9 This algorithm has several advantages: it handles feasibility and optimality
/-_together-and can detect "iiifeasibility after a finite number of iterations; it has very weak

restrictions on the constraints; it allows cuts that are not near the most violated cut; and
it solves the primal and the dual problems simultaneously. Upper bounds 'or finding an E-

optimal solution and for the distance between an c-optimal solution and an optimal solution
are given.

(4) Applications of the above algorithm to convex programming.rFirst, a certain semi-
infinite linear program is solved by this algorithm so as to obtain a feasible solution of a
convex program. Then, another semi-infinite linear program is solved by this algorithm so
as to obtain an optimal solution of the convex program. In particular, it is shown that for a
strongly consistent convex program this algorithm can find a feasible solution after a finite
number of iterations.
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Chapter 1

Introduction

1.1 Overview

Semi-Infinite programming, that allows for either infinitely many constraints or infinitely

many variables but not both, is a natural extension of ordinary mathematical programming.

There are many practical problems as well as theoretical problems in which the constraints

depend on time or space and thus can be formulated as semi-infinite programs. For example:

(1) A large class of engineering design problems such as electronic circuit design,

seismic-resistant structure design, and single-input single-output control systems design

can be formulated as nonlinear semi-infinite programs (see Polak (1981)).

(2) The problem of determining a cumulative distribution function that corresponds

to a stochastic variable can be formulated as a nonlinear semi-infinite program (Gustafson

and Kortanek (1973)).

(3) The educational testing problem, which concerns a reliability coefficient (that mea-

sures how reliable the students' total scores are in an examination consisting of a number

of subtests), can be formulated as a semi-infinite linear program (Fletcher (1981)).

(4) The standard convex program can be formulated as a semi-infinite linear program

(Dantzig (1963), Chapter 24).

The focus of this dissertation is on formulating and solving semi-infinite programming

problems.

In Chapter 2, we study a matrix rescaling problem that is interesting from a purely

mathematical point of view as well as having important applications. We first formulate this

1



Section 1.1 Overview 2

problem as a semi-infinite linear program and then develop an algorithm that completely

solves the problem by taking advantages of its special structure. Sufficient conditions that

guarantee finite termination are discussed, and computational results are reported.

In Chapter 3, we solve a matrix estimation problem that differs from the ordinary

least-square estimation in that the estimated matrix is required to be positive definite. We

transform this problem into an equivalent semi-infinite quadratic program and develop an

algorithm to solve it. A constant that measures the amount of positive definiteness required

of the estimated matrix must be specified. Given this constant, the algorithm will find an

approximate optimal solution after finitely many iterations, or will tend to an optimal

solution in the limit. We also give an upper bound on the total number of iterations needed

for finding an approximate optimal solution and estimate how good an approximate optimal

solution is compared to an optimal solution.

In Chapter 4, we present a one-phase algorithm for solving a large class of semi-infinite

linear programming problems. This algorithm is based on the algorithms developed in

Chapter 2 and Chapter 3. This algorithm has several advantages: it handles feasibility and

optimality together and can detect infeasibility after a finite number of iterations; it has

very weak restrictions on the constraints; it allows cuts that are not near the most violated

cut; and it solves the primal problem and the dual problem simultaneously. We prove the

convergence of this algorithm in two steps. First, we show that this algorithm can find an

c-optimal solution after finitely many iterations. Then we use this result to show that it can

find an optimal solution in the limit. We also estimate how good an C-optimal solution is

compared to an optimal solution and give an upper bound on the total number of iterations

needed for finding an c-optimal solution under some assumptions.

In Chapter 5, we show how to solve a convex program by semi-infinite linear program-

ming. We apply the general algorithm presented in Chapter 4 to solve a certain semi-infinite

program so as to obtain a feasible solution of the convex program, and then use this solution

as a starting point of another semi-infinite program to obtain an optimal solution of the

convex program. In particular, for a strongly consistent convex program the algorithm can
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find a feasible solution after finitely many iterations.

1.2 Preliminaries

The primal problem of semi-infinite programming is defined as:

(SIP) minimize f(x)

subject to

g(x, u) > 0 for all u E U,

where z E R", f : R' -- R', U C R ' is an infinite parameter set, and g : R' x U --- R'.

An important class of semi-infinite programming problems are semi-infinite linear pro-

grams in which the objective function is linear and the constraints are linear in x for any

fixed u E U. Explicitly, the primal problem of semi-infinite linear programming is:

(SIL) minimize cTX

subject to

a(u)Tz - b(u) > 0 for all u E U,

where c, z E R', U is an infinite parameter set, a : U --- R', and b : U - R 1 . The dual

program of (SIL) is defined as an infinite collection of finite dual linear programs: for all

finite subsets {u' : i E A} of U

(SID) maximize "ir, b(u')Y,

subject to

Zi~ a(u')yi -:- c

A is finite and {u' : i E A } C U

y > 0 for all i E A

Semi-infinite programming has been studied since the early 1960s. So far there are

three types of methods for solving semi-infinite programs: discretization-type methods,

semi-continuous-type methods, and continuous-type methods (see, e.g., Hettich (1979)).

A discretization-type method generates U, a finite subset of the infinite parameter

set U, and finds an i that minimizes f(x) over finitely many constraints g(x, u) > 0 for
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all u E 0. If the grid size d = maxeu minsf0 flu - 611 is sufficiently small, then i is

an approximate optimal solution to (SIP). The discretization-type methods are limited to

those U having nice properties, e.g., U = {u E R' : 0 < u < 1), and generally fail when U

is unbounded. The disadvantage of this type of method is that sometimes the approximate

solution i may not be satisfactory.

A semi-continuous-type method generates a sequence of finite subsets of U, (Uk : k

1,2,... with Uk C Uk+1 for all k, and finds zk = argmin{f(x) : g(z,u) > 0 for all u E

Uk), where {Uk k = 12, ... ) are generated in such a way that any cluster point of the

sequence {jZ : k = 1, 2,... ) is an optimal solution of (SIP). Semi-continuous-type methods

differ in the ways they generate {Uk : k = 1, 2,... }, some being more efficient than others

for the problem at hand.

A continuous-type method typically finds a finite set of differentiable convex functions

hi(z), i = 1,..., t such that {z : hi(z) < 0,i = 1,...,t) is the same as (z : g(x,u) :

0 for all u E U). When this can be done, the semi-infinite program can be reduced to

a standard convex program: minj{f(z) : h,(z) _5 0, i = I,..., t}. The drawback of

continuous-type methods is that the assumptions are often restrictive and convergence is

often only local.



Chapter 2

Rescaling a Matrix Positive Definite

2.1 Introduction

We solve the following matrix rescaling problem:

Given a square real matrix M, does there exist a positive diagonal matrix D such that DM

is positive definite? If such a D exists, how can it be constructed?

Such questions arise in mathematical economics and in the study of certain engineering

systems (see, e.g., Arrow and McManus (1958), and Araki (1975)). A necessary and suffi-

cient condition for the existence of such a D for a 3 x 3 matrix was given by Cross (1978).

A necessary and sufficient condition for the existence of D for the general n x n case was

given by Barker, Berman and Plemmons (1978). However, their condition is difficult to

verify in practice. Methods for constructing such D's for special classes of matrices were

discussed in Barker, Berman and Plemmons (1978), and Berman and Ilershkowitz (1983).

The existence of D for a square Leontief (Minkowski) matrix was proved by Tartar (1971)

and Dantzig (1983). The first algorithm for solving the general problem was given by Khalil

(1982). He defines a function g(x) to be the smallest eigenvalue of D(x)M+MTD(x), where

D(x) is a diagonal matrix with diagonal elements xi, ... , x,,. His idea is that D(x)M is

positive definite if and only if g(x) is positive. Ills algorithm finds a positive x such that

g(x) > 0 as follows: At iteration k, if g(Xk) > 0, then stop because D(xk)M is positive

definite; otherwise, find a direction dk by solving a linear program and then construct xk + 1

5



Section 2.1 Introduction 6

as a convex combination of xk and dk such that Xk+1 is in the interior of the unit box of

R'. If such D's exist, then his algorithm will find one after a finite number of steps. If his

algorithm goes on infinitely, then there is no positive diagonal matrix D such that DA! is

positive definite.

Herein we present an alternative way of solving this problem. Our approach is: first

formulate the matrix rescaling problem as a semi-infinite linear program and then solve

the semi-infinite linear program by generating and solving a sequence of standard linear

programs. Our algorithm is "alnost" finite. To see this, let us divide square matrices M

into three classes.

Class 1. M that can be rescaled positive definite (i.e., DM is positive definite for some

positive diagonal matrix D).

Class 2. M that cannot be rescaled positive definite and moreover cannot be rescaled

positive semidefinite (i.e., DM is not positive semidefinite for any nonnega- tive nonzero

diagonal matrix D).

Class 3. M that cannot be rescaled positive definite but can be rescaled positive

semidefinite (i.e., DM is positive semidefinite for some nonnegative nonzero diagonal matrix

D).

Given any Class I matrix M, our algorithm can find a positive diagonal matrix D such

that DM is positive definite after a finite number of steps. Given any Class 2 matrix Al,

our algorithm can detect that M cannot be rescaled positive definite after a finite number

of steps. Given any Class 3 matrix Af, our algorithm can detect that M cannot be rescaled

positive definite in the limit. But, a matrix A! is of class 3 if and only if the origin is on

the boundary of a convex set (see Lemmas 2.2 and 2.3), or equivalently, if and only if a

particular function of the elements of Ml is zero (see Remark 2.3), which can only happen

for a set of very special A! of measure zero. Thus our algorithm is "alnost" finite. Another

advantage of our algorithm is that it is not compromised by small errors in the calculation

of eigenvalues and eigenvectors.

The content of this chapter is as follows: in Section 2.2 we explain notation and prelim-
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inaries. In Section 2.3 we formulate the problem as a semi-infinite linear program, specify

the algorithm, prove its correctness and convergence, give conditions that guarantee finite

termination, and finally present necessary and sufficient conditions for M to be rescaled

positive definite. In Section 2.4 we report on computational results. Finally, we discuss

possible ways to accelerate the convergence in Section 2.5.

2.2 Notation and Preliminaries

We define an n x n real matrix Al, not necessarily symmetric, to be positive definite if

XTMx > 0 for all 0 0 x E R", and to be positive semidefinite if xTMx > 0 for all x E R '.

If there exists a positive diagonal matrix D such that DM is positive definite, we say

that M can be rescaled positive definite. Such matrices are called "diagonally stable" in

Barker, Berman and Plemmons (1978). "Lyapunov diagonally stable" in Hershkowitz and

Schneider (1985), and "Volterra-Lyapunov stable" in Cross (1978).

Superscripts on vectors are used to denote different vectors, while subscripts are used

to denote different components of a vector.

Let S' 1 = {x E R : X'X = 1} denote the unit sphere in Rn and S - = {x E Sn-
1

x > 0) denote the set of nonnegative vectors in S' - 1 .

D(x) is a diagonal matrix with diagonal elements x, for i = 1 .. , n.

For a real symmetric matrix B, let A[B] stand for the smallest eigenvalue of B and

V[B] a corresponding eigenvector of unit length.

Given a mathematical programming problem (P), v(P) denotes the optimal objective

function value of (P).

Let e' be the i-th unit vector of R" and e = c1 +.. + en.

JI Ix denotes the Euclidean norm of x.

Fact 2.1. M is positive definite if and only if M + M' is positive definite.

Fact 2.2. M is positive definite if and only if xrAx > 0 for all x C S"- 1 .

Fact 2.3. All principal minors of Af remain sign invariant under a positive rescaling

DM.
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Fact 2.4. If M is positive definite, then all its principal minors are positive (see, e.g.,

Cottle (1964)).

Fact 2.5. If M is positive definite, then BTMB is positive definite for any real

nonsingular matrix B.

Fact 2.6. For any real symmetric matrix B, A[B] = min{uTBu : u E S " - 1 } (see, e.g.,

Wilkinson (1965), pp.98-99).

Fact 2.7. For any real symmetric matrix B, A[B] is a continuous function of the

elements of B (see, e.g., Isaacson and Keller (1966), p.136).

Remark 2.1.

(1) Let DM (MD) be a positive rescaling of the rows (columns) of the matrix M.

Then, M can be column-rescaled positive definite if and only if M can be row-rescaled

positive definite. Indeed, if DM is positive definite, where D is a positive diagonal matrix,

then (D - 1 )TDMD - l = MD - 1 is also positive definite (Fact 2.5) and vice versa.

(2) We are only interested in rescaling nonsymmetric matrices because if a real sym-

metric matrix is not positive definite, then it cannot be rescaled positive definite. Indeed, if

M can be rescaled positive definite, then (by Facts 2.3 and 2.4) all its principal minors are

positive. If a real symmetric matrix is not positive definite, then at least one of its leading

principal minors is not positive and thus it cannot be rescaled positive definite.

(3) If M can be rescaled positive definite, then it is easy to see that M is nonsingular

and the diagonal elements of M are positive (by Fact 2.4, dim,, > 0 for all i, which implies

m,, > 0 for all i). Therefore, without loss of generality we assume that the matrix M to be

rescaled is nonsymmetric, nonsingular and has only positive diagonal elements.

2.3 An Algorithm and its Convergence

First we show that solving the matrix rescaling problem is equivalent to finding a solution

of an infinite system of linear inequalities.

Theorem 2.1. Suppose that all diagonal elements of the matrix M are positive. Then M
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can be rescaled positive definite if and only if the infinite system of linear inequalities

(ISLI) : [D(u) _u]"'z> I for all u E S-'

has a solution. Moreover, if i is any solution of (ISLI), then D(i) rescales M positive

definite.

Proof. We will make frequent use of the identity D(u)x = D(x)u for all u and X. If there

exists a positive diagonal matrix D(d) such that D(d)M is positive definite, let f(u) =

uTD(d)Mu for u E S' - 1 . Since f(u) is a continuous function of u and Sn- 1 is a compact

set, f(u) achieves its infimum on S' - 1 , i.e., there exists ii E Sh -  such that f(u) _ f(fi) > 0

for all u E S">- . Let i = d/f(i), then

[D(u)Mu]T' = [D(u)Mu)T d/f (i)

= uT M T D(u)df(fi)

= uTM T D(d)u/f(fi)

= [uTD(d)Mu]T /f(ji)

= f(u)/f(fi)

>1

for all u C Sn- 1. Thus (ISLI) has a solution. On the other hand, if i is a solution of (ISLI),

then because uTD(i)Mu is a scalar, we have

U TD()Mu = [uTD( )Mu]T

= U'rMrD()u

= uTMTD(u)i

= [D(u)Mu]T'j

>1

for all u E S n - 1 . By Fact 2.2, D(i))M is positive definite. To complete the proof, we only

need to show that any feasible x, in particular i, is positive. Let e' be the unit vector with

1 in component i. Choose u = e' E S' -1 , then i, = (es)TD(i)Me'/muj > 1/r > 0. *
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Theorem 2.1 tells us that M can be rescaled positive definite if and only if (ISLI) has

a solution; and, moreover, for any i solving (ISLI), D(i) rescales M positive definite. The

algorithm we are going to present is designed to test whether (ISLI) has a solution or not

and to find such a solution if it exists.

It is well known that deciding whether a finite system of linear inequalities has a

solution is equivalent to solving a linear program (see, e.g., Dantzig (1963), Chapter 5).

In an analogous way, in order to solve the infinite system of linear inequalities (ISLI), we

convert it into a semi-infinite linear program (SILP) by assigning to it an objective function

to be minimized such as below:

(SILP) minimize e T X

subject to

[D(u)Mu]T x > I for all u G S n - 1,

where eT = (1, 1,... , 1) is a row vector with n ones. The dual of a semi-infinite linear

program (DILP) was defined earlier in Section 1.2 as an infinite collection of finite dual

linear programs: For all finite subsets {u' : i E A) of S -1 ,

(DILP) maximize Zi a Yi

subject to

EEA (D(u')Mu')y = e

yj > 0 for all i E A

A is finite and {ui : i E A) C S " 1 .

The algorithm generates and solves a sequence of linear programs LP(k), the restriction

of (DILP) to n + k columns. We will show that if the value of the objective, v(LP(k)), tends

to infinity, then M cannot be rescaled positive definite (Theorem 2.3). Otherwise, we will

show that a positive vector i which rescales M positive definite can be found after finitely

many iterations (Theorem 2.2).

As noted earlier, we assume that the input matrix M is nonsingular and has only

positive diagonal elements (Remark 2.1).
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Algorithm 2.1.

Step 1 (Initialization).

Let k:= 0;

let c < 1 be a small positive number (e.g., c =I-);

let LP(0) be the linear program

maximize i=1 Yi

subject to

Eni=, (D(e')Me')y, = e

yi > 0 for all i = ,...,n.

Step 2.

Let xk be an optimal dual solution of LP(k).

Find a Ak satisfying IAk - A[D(xk)M + MTD(xk)]l < (1/2)c.

If Ak > (1/2)c, then D(zk)M is positive definite, stop.

Step 3.

Find a vector uk+1 such that

I[uk+1 - V[D(xk)M + MTD(z)]I <c and (uk+l)TD(zk)Muk+l <E.

Form LP(k + 1) by adjoining the column, D(uk+l)Muk+l,

to the constraint matrix of LP(k) with "cost" coefficient = 1;

solve LP(k + 1).

If v(LP(k + 1)) = oo, then M cannot be rescaled positive definite, stop.

Else, k := k + 1, go to Step 2.

Comments on Algorithm 2.1.

(1) Since we assume that mi > 0 for all i = 1, ... , n, LP(0) is feasible. Therefore,

LP(k) is feasible for all k.

(2) Efficient algorithms for calculating approximate eigenvalues and eigenvectors of a

matrix are discussed in Wilkinson (1965). The amount of computational effort to compute

these approximations depends on the error bound c.
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(3) A symmetric matrix B is positive definite if and only if A[B] > 0; in general this

is not true for nonsymmetric matrices. Therefore, we calculate the smallest eigenvalue of

the symmetric matrix D(zk)M + MTD(Xk) in order to know whether D(xk)M is positive

definite or not (Fact 2.1).

(4) If the algorithm does not stop at a certain iteration k, then it generates uk+l

satisfying [D(uk+l)Muk+l] T xk < e < 1. While [D(u')Mui]Tzk > 1 for all i = 1, ... , k

since z k is an optimal dual solution of LP(k). Therefore, no column D(uk)Muk can be

brought in more than once.

Next, we prove the correctness and convergence of the algorithm and discuss conditions

that guarantee termination in a finite number of iterations.

Theorem 2.2. If there exists a positive diagonal matrix D such that DM is positive

definite, then the algorithm can find such a D after finitely many iterations.

Proof. If M can be rescaled positive definite, then the corresponding program (SILP)

is feasible by Theorem 2.1. Let i be a feasible solution of (SILP). Then, for all feasible

solutions of (DILP), we have

Z 5 E y[D(u)Mu'IT = eT i.

iEA iEA

Namely, the objective function of (DILP) is bounded from above by eTi. The algorithm

generates a sequence of linear programs LP(k). Each LP(k) is feasible and is the restriction

of (DILP) to certain columns. Hence, the objective function of LP(k) is also bounded from

above by eT. Recall that the first n columns of the constraint matrix of LP(k) are mije'

for i = 1, ... , n and therefore any dual solution x satisfies miixi >_ 1, mi > 0. By the

duality theorem of linear programming, we can find an optimal dual solution Xk of LP(k)

which satisfies

0<(mii) - ' < X <eX k < eT for all i = 1,..., n.

Let T = {z E R' : 0 < z < eTt for all i = 1... , n) and F(z,u) = [D(u)Mu]T z. Then

F(z,u) is uniformly continuous on T x S'-1, i.e., for any 6 > 0, there exists q > 0 such
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that
11(z, u) - (i, ii)JI < q implies IF(z, u) - F(i, fi)l < 6

(2.1)
for all (z, u) and (i, ii) E T x S"'.

In particular, for I = 1 - e > 0, there exists f > 0 such that (2.1) holds. If, on the contrary,

we were to assume that the algorithm goes on infinitely, then it generates uk E S"- 1 for

k = 0, 1, .... Because S n - 1 is compact, for the q > 0, there exists ui and uj in the sequence

satisfying Ilui - ujIl < q. Without loss of generality, we assume that i < j. Because the

algorithm does not stop at iteration j - 1 and i < j, we have

F( J- 1, u' ) - [D(u')Mu']T x - ' > 1, (2.2)

and

F(xJ- I, u) ) = [D(uJ)MuJ TxJ- 1 < e. (2.3)

However, (2.2) and (2.3) imply that

JF(z J - , ,u') - F(J -. ,-u)) > 1 -, = 6 while II(x- 1 , u') - (z ' , u)1 < q,

which contradicts the uniform continuity of F(r, u) on T x S". It follows that the

algorithm must be finite for matrices which can be rescaled positive definite. I

Remark 2.2. We have proved the finiteness of the algorithm under the assumption that

M can be rescaled positive definite. In fact, the boundedness of v(LP(k)) = eTxk for k = 1,

2, ... is the only assumption we need for the proof. Since the feasible region of LP(k) is

contained in the feasible region of LP(k + 1), v(LP(k + 1)) > v(LP(k)) for all k. Therefore,

in the case M cannot be rescaled positive definite, the algorithm generates a sequence of

feasible solutions of (DILP) whose objective function values tend increasingly to infinity.

Hence:

Theorem 2.3. The following are equivalent:

(1) M cannot be rescaled positive definite;
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(2) v(DILP) = oo;

(3) limt-.,v(LP(k)) = oo. I

We have seen that the algorithm is finite in the case M can be rescaled positive definite.

We now give a condition which ensures the finiteness of the algorithm in the case M cannot

be rescaled positive definite, i.e., there exists a finite j such that v(LP(j)) = 0o.

Condition 2.1. M cannot be rescaled positive definite if for every nonnegative and nonzero

diagonal matrix D, there exists a u E S"- 1 such that uTDMu < 0. Equivalently, if there

does not exist a nonnegative and nonzero diagonal matrix D such that DM is positive

semidefinite or positive definite.

Theorem 2.4. If M satisfies Condition 2.1, then the algorithm terminates after finitely

many iterations.

Proof. Define G(x) = A[(D(x)M + M T D(x))/2] = \[D(x)M + MTD(z)]/2. It follows

from Fact 2.7 that G(x) is a continuous function of x. Since M satisfies Condition 2.1, we

have (Fact 2.6)

G(x) = minimumuTD(z)Mu < 0 for all x - S. -
a E.3"- I

where S-' = { E S n - 1 z > 0). Therefore,

/6 = maximum G(z) = maximum minimum u TMu < 0.
rESE-'S ' rEs

-
-

Let F(z, u) = [D(u)Mu]T x - uTMTD(z)u = [D(x)Mu]Tu. Let 6 = -,/2 > 0, then there

exists ,7 > 0 such that

1I(x, u) - (i, 15)11 < r implies IF(x, u) - F(i, ii)j < b -/2
(2.4)

for all (x, u) and (1, i) E S. - ' x S n - 1 .

As indicated in the proof of Theorem 2.2, if we assume on the contrary that the algorithm

goes on infinitely, it generates us and uJ (i < j) satisfying Iju'-u.1 < q and F(zx- t , u') > 1.

Let E' = -i'/llx -'ll. Since F(x, u) is homogeneous of degree one in x,

F( - ', u') > I/l=J -'11 > 0. (2.5)
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Let w = V[D(zi-')M + MTD(j-1 )]. Since w is normalized, w = V[(D(ij-')M +

M T D(ij - 1))/2]. Now choose the e of Step I of the algorithm such that e < q/. Then,

tIju - w~l < c < q in Step 3 and hence we have

JF(ij', u-1) - F(ij-, w)l < 6 = -,0/2

by the uniform continuity of F(z, u) on S; - ' x S"'. Thus,

',j) < -12 + wTD(ij-' )Mw

= -P/2 + (1/2)wr[D(i j -'1 )M + MTD(i )]w

= -03/2 + .A[(D(i j - ' )M + MTD(VJ- 1 ))/2]
(2.6)

= -13/2 + G(V - ')

:5 -0/2 + 0

= 0/2.

However, (2.5) and (2.6) imply that IF(ii-,ui) - F(.-',uJ)l > -(1/2) = b while

11 (0', u') - (jP'-, uj) II = I u' - uJ 11 < Y7, which contradicts the uniform continuity of

F(z, u) on S. - ' x S" - 1 . Therefore, if M satisfies Condition 2.1, then the algorithm termi-

nates after finitely many iterations. I

In the rest of this section, we discuss other necessary and sufficient conditions for M

to be rescaled positive definite and equivalent statements of Condition 2.1. First, we state

a theorem that we are going to use.

Alternative Theorem. Let hi(t) for i = 1, ... , n be n real-valued functions oft E T

where T may be finite or infinite. If U = {(h 1(t),. .. ,h,(t)) :t E T) is closed, then

(1) The system (hi(t),...,h,(t))T, > 0 for all t E T has a solution if and only if the

origin is not contained in conv(U), the convex hull of U.

(2) The system (hj(t), ._., h.(i))T z > 0 for all t E T has a non-trivial (i.e., nonzero)

solution if and only if the origin is not contained in the interior of conv(U) (Dines and

McCoy (1933)). 3
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Lemma 2.1. The matrix M with a positive diagonal cannot be rescaled positive definite

if and only if {z : [D(u)Mu]x > 0 for all u E S - I) is empty.

Proof. Let P = {z : [D(u)Mu]T z > 0 for all u E S " }. If P is empty, then (ISLI) has no

solution. By Theorem 2.1, M can not be rescaled positive definite. On the other hand, if

P is not empty, let i E P. Then, uTD(i)Mu = [D(u)Mu]T i > 0 for all u E S" 1. Hence,

D(.i)M is positive definite and ! is a positive vector. §

Lemma 2.2. M cannot be rescaled positive definite if and only if the origin is contained

in conv(D(u)Muu E S").

Proof. It is easy to show that (D(u)Mu - u E S" 1) is closed. The lemma then follows

easily from the Alternative Theorem and Lemma 2.1. 1

Condition 2.2. 0 E int{conv[D(u)Mu : u E S"-']) where int{S) denotes the interior of

a set S.

Lemma 2.3. Condition 2.1 and Co,,dition 2.2 are equivalent.

Proof. If M satisfies Condition 2.2, then the system

uTD(z)Mu = [D(u)Mu]'z > 0 for all u E S" - 1

has no non-trivial solutions (by the Alternative Theorem). This implies for any 0 $ d > 0,

there exists u E S"- 1 such that uTD(d)Mu < 0, i.e., M satisfies Condition 2.1. On the

other hand, if M does not satisfy Condition 2.2, then (by the Alternative Theorem) there

exists i : 0 such that uT'D(i)Mu = [D(u)Mu]ri > 0 for all u E S" 1 . In particular,

(e)TD(f)MeI = iimi, >_ 0 for all i = 1, ... , n. This implies that i, > 0 for all i = 1,

... , n. (we are assuming that all diagonal elements of M are positive). Hence, M does not

satisfy Condition 2.1. 1

Remark 2.3. Notice that G(z) = minimum ES-, uTD(z)Mu is a continuous function

of z. It is not hard to show the following:
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(1) M can be rescaled positive definite if and only if

maximum minimum uTMu > 0.
zES4

- 1  UES
- 1

(2) Condition 2.1 or 2.2 is equivalent to

Condition 2.3. maximum minimum uTMU < 0..rES.- I  uESU - 1

We now summarize all necessary and sufficient conditions for M to be rescaled positive

definite in Theorem 2.5.

Theorem 2.5. If all diagonal elements of M are positive, then the following are equivalent:

(1) M can be rescaled positive definite;

(2) (ISLI): [D(u)Mufz > I for all u E S' - ' has a solution;

(3) [D(u)Mu] Tz > 0 for all u E S 1 has a solution;

(4) the origin is not contained in conv(D(u)Mu :u E S - );

(5) maximum - minimum ,,s-i uTMu > 0. I

We have proved that the algorithm solves the matrix rescaling problem correctly and

completely. It is finite if M is a class I or class 2 matrix. It is possibly infinite only if M is a

class 3 matrix. Can one give an upper bound on the total number of iterations needed in the

case of finite termination? Can one prove that the algorithm is finite for class 3 matrices?

The answers will be yes if we have a positive answer to the following open question.

Open Question. In the case (ISLI) has solutions (equivalently, M can be rescaled positive

definite), can one give an upper bound on one solution of (ISLI) in terms of M ? Namely,

can one find a real number h(M) determined by M such that there exists a solution i of

(ISLI) satisfying ii < h(M) for all i?
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2.4 Computational Results

We have coded the algorithm in FORTRAN. We use the subroutine MINOS (from the

Systems Optimization Laboratory, Department of Operations Research, Stanford Univer-

sity) to solve LP(k) and the subroutine F02ABF (from Department of Computer Science,

Stanford University) to calculate eigenvalues and eigenvectors. The data were randomly

generated and the program was executed on a DEC 20 computer with the following results,

see Table 2.1.

Problem Number of CPU time
dimension iterations (seconds)

3x3 5 3.15
5x5 14 7.18
6x6 9 4.69
8 x 8 9 6.26

16x 16 8 6.23

Table 2.1

2.5 Accelerating the Convergence

Algorithm 2.1 solves the semi-infinite linear program (DILP) by generating and solving a

sequence of linear programs LP(k), for k = 0, 1, . If the algorithm does not stop at a

certain iteration k, then a new column D(uk+l)Muk+l is generated and brought in. This

is a cut, [D(uk+l)Muk+l]TX 
> 1, on (SILP). If we want to accelerate the convergence of

the algorithm, we have to find ways to generate more efficient cuts.

Let's look at the problem geometrically. Suppose the algorithm does not stop at it-

eration k. Let f&(u) = uTD(Zk)Mu. Then, f,(ui ) > o, i = 1, .... , k and fk(uk+l) < 0.

Since fk (u) is a continuous function, for each u, i = 1, ... , k, there exists a relatively open

neighborhood Nk(u') C S' such that fk(u) > 0 for all u E Nk(u'). fk(uk+l) < 0 means

that UIfi Nk(ui) does not cover S' - '. Suppose M can be rescaled positive definite and

the algorithm stops at iteration k. That means Ui~l Nk(u') covers S" -1 . Therefore, we

want to make Nk(ut') bigger so that we need fewer Nk(u') to cover S" -1 . Let's consider



Section 2.5 Accelerating the Convergence 19

the "cut" [D(Uk+l)Muk+l]Tz > c for some a > 1, and hope that it will give a bigger

Nk+1 (u'). However, since we are solving linear programs, changing all the cost coefficients

to a will result in a solution azk+ l and therefore has no influence on choosing uk+2. If we

go over the proofs of Theorems 2.1 and 2.2, we find that if we change [D(uk)Muk]TZ > 1

to [D(uk)MukITX > ak , where 0 < b < Ck _< L for all k, then Theorems 2.1 and 2.2 still

hold. Since fk(Uk+ ') = (I/ 2 )uk+l [D(x"k)M + MTD(xk)]uk+'

= (1/2)A[D(zk)M + MTD(Xk)],

if fk(uk+l) < 0, a natural way to choose ak+l is

Otk+ = -Ofk(uk+ ') = -OA[D(Xk)M + MTD(zk)],

where 9 is a positive constant (if -Ofk(uk+l) < 6, just let ak+l = 6).

A number of randomly generated problems were computed using the above idea with

0 = 2 (revised method) and compared with - 1 (original method), see Table 2.2.

Problem No. of iterations No. of iterations
dimension original method revised method

5x5 14 2
6x6 9 8
8x8 9 2

16 x 16 8 3

Table 2.2



Chapter 3

Positive Definite Least Square Estimations

3.1 Introduction and Problem Formulation

We solve the following matrix estimation problem:

Given two sequences of vectors at and b in R" with t = 1, ... , L,a small positive numbere

and a large number K >> c, find a real symmetric matrix X = (x,,) such that F-=, JXa'-

bjj2 is minimized among all the real square matrices X satisfying conditions (3.1) and (3.2):

XT = X and - K < xj <_ K for all i j = n. (3.1)

The smallest eigenvalue of X is no less than c. (3.2)

This problem arises from mathematical economics (see Dantzig, McAllister and Stone

(1988) and Lau (1978)). It differs from the ordinary least square estimation in that the

estimated matrix X is required to be positive definite (Fact 2.7). One way of solving this

kind of problem was given by Lau (1978). lie transformed the problem into an unconstrained

nonlinear least square problem by matrix factorization and suggested that the latter can

be solved by any algorithm designed for unconstrained nonlhneai programs. However, since

the objective function for his transformed problem is not convex, global convergence is

not guaranteed. Herein we transform the problem into an equivalent semi-infinite convex

quadratic program and develop a method to solve it. The solution method essentially solve

the problem by ignoring the positive definitness condition, then check to see for the solution

X = X' whether there is a vector u = u0 such that UTXu 0 < C. If there is, the linear

20
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inequality in X, namely uOTXU' > a > c become an additional constraint that X must

satisfy and the problem is iteratively solved again obtaining X = Xk until on some major

iteration k no vector u = uk can be found such that ukrXkuk < C.

As in Chapter 2, S 1 = {x E RI : xTx = 1} denotes the unit sphere in R ' and JIzJJ

denotes the Euclidean norm of r. For a real symmetric matrix B, A[B] stands for the small-

est eigenvalue of B and V[B] a corresponding eigenvector of unit length. Superscripts on

vectors are used to denote different vectors, while subscripts are used to denote components

of a vector.

To solve this estimation problem, we first transform it into an equivalent (vector form)

semi-infinite convex quadratic program.

For the given data a ,  b E Rn for t = 1 ... ,L, let A =(al ... a')T and B=

(b! ... b)T for all i = 1, ... , n. Then A is an L x n matrix, B' is an L-vector, and A TA is

an n x n square matrix. Let M be an n x n2 block-diagonal matrix with diagonal blocks

ATA and E be an nL x n2 block-diagonal matrix with diagonal blocks A, namely,

0 AT A ... 0
0 AT . •. A.,

0 0 .. AA

and
A .0 ... 0
0 A ... 0

Let Xi. be the i-th row of matrix X for all i = 1, ... , n, and Y = F(X) = (X.,... ,X.)
"r =

(xi,... ,xl,... ,Znl .... , X,))T. For example, if

X= 4 56
(7 8

then Y = F(X) = (1, 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 )T. In terms of vectors, condition (3.1) becomes:

YOI)n+J = = X (j-1)+j for all ij-1 .= . , n
(3.1')

and -AK<'k < K forall i= 1,...,n
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By Fact 2.6, condition (3.2) is equivalent to: uTXu > c for all u E Sn- '. Therefore,

condition (3.2) becomes:

uTXu - iU T(X..)T = (U 1 UT... UnUT)Y > e for all u E S n -1 . (3.2')

The objective function becomes:

f. 1. itJliXa' - bf12 = 1 -(,.a' - b,) 2

= Z: Z(ia' - b )
rt= 1=1

n L

I(aT X,. - bt)2

n

= E IIA(X. )" - B'112

z=1
n

= - Xi. ATA(Xi.)T - 2(BZ)TA(Xi.)T + (BI)TBi }

= yTMy - 2((B )T... (Bn)T)EY + Z(BI)TB'.

i=1

Consequently, the equivalent semi-infinite quadratic program is

(SIQP) minimize yTMy - 2((B 1 )T... (B" )T)Ey + E= (Bi)TB'

subject to

(UluT
.
.. UnUT)y > c for all u E S

Y,-I),n+j - 1(j1).n+i = 0 for all i,j = 1,. .. ,

-K < Y, <K for all i= 1,...,n 2 .

Remark 3.1.

(1) M is positive semidefinite because each of its diagonal blocks ATA is positive

semidefinite. This implies that the objective function of (SIQP) is convex. The feasible

region of (SIQP) is compact and convex, and is defined by an infinite number of linear

constraints. Moreover, it is nonempty since Y" = F(d) is a feasible solution, where I is the

identity matrix. Therefore, (SIQP) is a feasible semi-infinite convex quadratic program and

optimal solutions for (SIQP) exist.
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(2) Since Y = F(X) = (Xi. .. X,.) is a bijection, F-'(.) exists. Therefore, X =

F-'(Y) and uT Xu = uT F-1(Y)u - (uluT ... unuT)Y. For convenience, we use u T F- 1 (Y)u

and (uluT . .. unuT)y interchangeably.

We have shown that this positive definite least square estimation problem is equivalent

to the semi-infinite convex quadratic program (SIQP). In Section 3.2, we propose an algo-

rithm for solving (SIQP) and prove its convergence. In Section 3.3, we estimate the total

number of major iterations and the final objective function value to attain a prescribed level

of approximation to an optimal solution. In Section 3.4, we present computational results

for randomly generated data.

3.2 An Algorithm and its Convergence

We propose an algorithm for solving the semi-infinite quadratic program (SIQP). This

algorithm solves (SIQP) by generating and solving a sequence of feasible convex quadratic

programs QP(k) for k = 1, 2, .... Every QP(k) has the same objective function as that of

(SIQP) and the feasible region of QP(k) contains that of QP(k + 1).

Algorithm 3.1.

Step 1 (Initialization).

Let k: = 0;

let a be a constant such that c < a << K;

let QP(O) be the quadratic program

minimize H(Y)= YTAIY -2((B1)r. .. (Bn) T )EY + r-=(B')TB'

subject to

YO-I)+J- Y() , = 0 for all i,j = 1,...,n

-K<Ys <Kforalli= 1 .... ,n 2.

Step 2.

Find an optimal solution Yk of QP(k);

let Xk = F-(Yk), i.e., x ' = l,+ for all i,j = ,...,n;

.. .............. . . . .~1 0== i u m ~ ilI~ ~ I I~ nI
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calculate A[X] and V[X'];

if \[X*] > c, go to Step 4.

Step 3.

Let uk =V[Xk;

form QP(k + 1) by adding a cut, (uk)'F-'(Y)uk > a , to QP(k);

k :=k+ 1;

go to Step 2.

Step 4.

If a > c, yk is an approximate optimal solution of (SIQP); stop.

If ar = C, yk is an optimal solution of (SIQP); stop.

Comments on Algorithm 3.1.

(1) For any k, the feasible region of QP(k) is a nonempty polytope since Y = F(aCI) is

a feasible solution. Therefore, optimal solutions exist for all QP(k). Furthermore, since the

objective function of QP(k) is quadratic and convex, there are finite algorithms for finding

one of its optimal solutions.

(2) Efficient finite algorithms for calculating eigenvalues and eigenvectors of a matrix

to any specified level of approximation can be found in Wilkinson (1965).

(3) k counts the number of major iterations (Step 2-Step 3), or equivalently, the number

of cuts added before termination. Each major iteration can be processed finitely.

(4) a is a constant and c < ar << K. If a > E, then an approximate optimal solution

will be found after a finite number of major iterations (see Theorem 3.1). If a = e, then

any cluster point of of the sequence Y0 , y 1 , y 2, ... is an optimal solution for (SIQP) (see

Theorems 3.2 and 3.3).

Theorem 3.1. If a > c, then Algorithm 3.1 can find an approximate optimal solution of

(SIQP) after a finite number of major iterations.

Proof. Let H(Y) = YTMY - 2((Bi)T. . (Bn)T)EY + i=,(B)T(B') be the objective
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functions of (SIQP) and QP(k) for all k. Let

C = {Y : -K < Y _< K,i = I,...,n 2 } x S' and G(Y,u) = uT F - ' (Y)u.

Then G(Y, u) is uniformly continuous on C. Therefore, for 6 = a - c > 0, there exists i? > 0

such that
II(Y, u) - (Y, ii)II < Y7 implies IG(Y, u) - G(Y, fi)l < 6

(3.3)
for all (Y, u) and (Y1, ii) in C.

If Algorithm 3.1 goes on infinitely, then it generates a sequence uk E S' - ' for k = 0, 1, 2,

.... Since S n ' is compact, for the q > 0 , there exist uki and uki in the sequence such that

Ilu k, - ukj11I < 17. Without loss of generality, we assume that ki < ki. Since Algorithm 3.1

does not stop at iteration kj and ki < ki, we have:

G(yk,,uk,) = (uki)TF - (yki)uki > a; (34)

G(Yki,uk ) = (ukj )T F-(Yk )ukj < C. (3.5)

However, (3.4) and (3.5) contradict (3.3). Therefore, if a > c, then Algorithm 3.1 must

terminate finitely. Suppose that it stops at a certain iteration k. Then, A[F-(Yk)] > e

and by Fact 2.6, yk is a feasible solution of (SIQP). However, since a > C, the constraints

(ui)TF - l(Y)u' > a for i = 0, 1, ... , k - I may be violated by certain feasible solutions

of (SIQP). We can not guarantee that H(Yk) !5 H(Y) holds for all feasible Y. But, if a

feasible solution of (SIQP) satisfying \[F - '(Y) ] > a, then H(Yk) 5 H(Y) is guaranteed

to hold. Therefore, yk is only an approximate optimal (or a-suboptimal) solution in the

case a > c. I

Remark 3.2. When a increases, the number of cuts required to be added before termina-

tion decreases, but the final objective function value increases. For given data and choice

of a, if the algorithm does not terminate by a specified number of iterations, we can always

increase a and try again.

Theorem 3.2. If a = c and Algorithm 3.1 stops at a certain iteration k, then Yk is an

optimal solution of (SIQP).
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Proof. Let H(Y) be the objective functions of (SIQP) and QP(i) for all i. If Algorithm 3.1

stops at a certain iteration k, then \[Xk] >_ c. By Fact 2.6, yk is a feasible solution of

(SIQP). Next, suppose that Y is an arbitrary feasible solution of (SIQP). Because a = c,

all cuts generated in Step 3 are necessary. Hence, Y is feasible for all QP(i). In particular,

Y is feasible for QP(k). Since Yk is an optimal solution of QP(k), we have H(Yk) :_ H(Y).

It follows that yk is an optimal solution of (SIQP). I

Theorem 3.3. Suppose that a = e and that Algorithm 3.1 does not stop finitely. Let the

sequence Yo, y 1 , y 2, ... be generated by Algorithm 3.1. Then any cluster point of this

sequence is an optimal solution of (SIQP).

Proof. Let Y" and uk for k = 0, 1, 2, ... be generated by Algorithm 3.1 with a = C. Since

YA for k = 0, 1, ... are in a compact set, there exist cluster points. Let Y* be a cluster

point, and without loss of generality we assume that limk-. Yk = Y*. We claim that for

any P3 satisfying 0 < /# < c, there exists an integer N(j3) such that \F - ' (Yk)] ! 0 for all

k > N(/). We skip the proof here since it is similar to the proof in Theorem 3.1. By this

claim and the continuity of F-1(. ) and \ [.) (Fact 2.7), we have A[F- 1 (Y*)] _! # for any

# satisfying 0 < # < c. Consequently, [F- 1 (Y*)] _ cE and Y* is feasible for (SIQP). It

remains to show that Y* is optimai. Let Y be an arbitrary feasible solution of (SIQP). Then

Y is feasible for all QP(k). Because yk is an optimal solution of QP(k) and the objective

functions H(Y) of QP(k) and (SIQP) are the same, we have H(Yk) < H(Y) for k = 0, 1,

2 .- It follows that H(Y*) _ H(Y) holds for all feasible Y and Y* solves (SIQP). I

Remark 3.3. Since a = c, the feasible region of QP(k) contains that of (SIQP). As the

algorithm goes on, yk becomes more and more close to the feasible region of (SIQP) and

H(Yk) tends increasingly to H(Y*).

3.3 Estimation of Upper Bounds

We have proved that if a > c, then the algorithm can find an approximate optimal solution

of (SIQP) after finitely many iterations. Let Y* denote an optimal solution of (SIQP) and
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Y' denote the approximate optimal solution for some a > c. We know that Y' is feasible

for (SIQP) and that for any feasible Y satisfying A[F-I(Y)] > a, H(Y) > H(Y ¢k) > H(Y*)

holds. Now we want to know how good Y" is, namely, we want to have an upper bound

for IH(Y2) - H(Y*)I. Remember that when o = E, the algorithm generates a sequence

Y' for i = 1, 2, ... , and H(Y') tends increasingly to H(Y*). Therefore, if we want to

know how good Y"k is, we reset a = c and execute the algorithm until some iteration k.

Then we have IH(Y ' ) - H(Y*)I < H(Y') - H(Yk), and JH(YO) - H(Y*)I/H(Y*) <

(H(Y 'k) - H(Yk))/H(yk).

In the rest of this section, we give an upper bound of the total number of major

iterations needed for finding Y". We begin with Lemma 3.1, which was stated and proved

by Alan J. Hoffman (verbal communication).

Lemma 3.1. If u, fi E S'- ', then ' I(u, - fi,)uji ! njju - fill.

Proof. Let vi = Iu -u ii for i = 1, ... , n, z= = (Vl,... ,vn), z 2 = (v2, .vni I), ....

zn = (v,,vl, ... ,v,,_), and y = (JulI, ...,JunO. Then,

n nI(ui -fii)u l- I= vilujI

YTxI + YTZ2 + .., + y Tzn

n

t=1

= nllyYlllXl 11

= nllu - ill.

Lemma 3.2. Suppose that jlu - ill < (a - c)/2nK where u, fi E S - l', a > c > 0, and K

is the given bound on Y. If Y is feasible for (SIQP) and G(Y, fi) _ o, then G(Y,u) _> c.
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Proof. n

IG(Y, u) - G(Y, i)I = I (uuj - fii)Y,_,),+j

< K R I(u, - fi)ujI + fii(u 1 - i)[

2nKIIu - fil (by Lemma 3.1)

<a0 - 1E.

Therefore, G(Y, u) G(Y, ii) - (a - c) > a - (a - c) = c. I

Let Bn(u, r) denote the n-dimensional Euclidean ball with center u E Rn and radius

r. At iteration k, G(Y, uk) >_ a is added into the constraints of QP(k + 1). If the algorithm

does not stop, then it will find a uk+l E S"- 1 satisfying G(Yk+l, uk+l) < e. Since yk+l

is feasible for QP(k + 1), we have G(Yk+l, us) > a for i = 1, ... , k. From Lemma 3.2, we

know that for all k = 1, 2, ...

k+1 U Bn(u', (a - )/2nK) n S"'n. (3.6)

Hence, if at a certain iteration k we have

k

U Bn(U', (a - e)/2nK) n S' 1 = S"- 1, (3.7)
i=1

then the algorithm must stop since it cannot find a uk+l E S' - ' satisfying G(Yk+l, u+ 1) <

c. To estimate a k such that (3.7) holds, we need to know a lower bound of the (n - 1)-

content (volumn) of UOi1 Bn (ui, (a - E)/2nK) n S'-1.In order to obtain this lower bound,

we need a lower bound of the (n- 1)-content of B,(u, r)nS n- 1.In the following discussion,

we use V(T) to denote the j-content of a j-dimensional set T.

Fact 3.1.

(1) V.(B.(U, r)) = rnV /r((n/2) + 1),

(2) V. - 1 ;/rn/) =2),

where r(p) = fo+' zo- 1 e-tdx for 3 > 0 is the gamma function.
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Lemma 3.3. If u E Sn'- and r < i/f2, then,

V.- 1 (B.(u, r) n S' - 1 ) > ( /72 r)n- /r((n + 1)/2).

Proof. Without loss of generality, let u = (0, 0,... , 1). Then,

V,._(B.(u, = J. .J (1 - X .... x2_, ) 1 / 2 d . ..

z,+ +z,_,<p2

> J"'/ dxl...dxl,,

where p is obtained by solving the following system of equations:

x 2 + + 2

+ ._,+ 1 + =1 - z(3.8)

S2- 2.

Solving (3.8) we get p2 = r2(4 - r2)/4. Since r < V/5, we have p 2! r/,2. Therefore,

V,,1(B,(u, r)n Sn-l) ) /I.../I dx, ... dz,,_

+ .)2) 2= (v -7-2)"-1/r((- +I0/2) l

Theorem 3.4. If a > c, then an upper bound for the total number of major iterations

needed for finding Y' is: (7r/2)Vn/(4vf/nK/(a _ ))n - 1 .

Proof. From (3.6) we know that B,,(u', (a - e)/4nK) nl B,.(uj, (a - e)/4nK) is empty for

all i j. Therefore,

k

Vn_, (U B.(u', (et - c)/2nK) n s"-')
i=1

k

> V_ (U Bn(u', (a - )/4nK) n s,-,) (3.9)
i=1

= kV.-,(B.(u 1, (a - c)/4K) n lS -1 )

> k(4,/7- (a - E)/4nK))"-'/r((n + 1)/2).
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It follows from (3.7), (3.9), and Fact 3.1 that an upper bound for the total number of major

iterations for finding Y' is:

2v/;/r(n/2) 2\(4/2nK)- r((n + 1)/2) (3.10)

(\/2 (a - E)/4nK) /I((n + 1)/2) (a - ()n-1 r(n/2)

Since G(Y, u) = G(-Y, u) for all u E R , only half of Sn -1 needs to be covered by

U= 1 Bn(u", (a - E)/2nK n S 1 ). Therefore, we can cut the bound in (3.10) by half.

Also, it is not hard to show that 1'((n + 1)/2)/r(n/2) ./'n-v/2 (see Appendix A). Thus

Theorem 3.4 is established. 1

3.4 Computational Results

We have coded Algorithm 3.1 in FORTRAN. We use the subroutine QPSOL (from the Sys-

tems Optimization Laboratory, Department of Operations Research, Stanford University)

to solve QP(k) and the subroutine F02ABF (from Department of Computer Science, Stan-

ford University) to calculate eigenvalues and eigenvectors. The program was executed on a

DEC 20 computer. All components of the input data at and bt are i.i.d. U(-0.5, 0.5). First,

we compute one problem six times with different a values to demonstrate the influence of

ot on the number of major iterations and on the final objective values, see Table 3.1.

Given data:

L=8, = 1.0, K= 10", n2 = 16;

al - (-0.3052, 0.1087, -0.3915, -0.4383)

a2 -
- ( 0.1379, 0.1707, -0.1208, 0.3839)

a1 = ( 0.2999, -0.4803, 0.1790, -0.2021)

a4 = (-0.1334, 0.1864, -0.0431, 0.4557)

a.%= (-0.0681, -0.4627, -0.1384, 0.0547)

a6 = (-0.4691, 0.0743, 0.3823, 0.1650)

a7 = (-0.2117, -0.3549, 0.4991, -0.1264)

an = (-0.0885, 0.0886, -0.4886, -0.3304)

= C 0.2325, -0.1774, -0.3115, 0.2133)
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b2 = (-0.4512, -0.1078, 0.0383, -0.0906)

b3 = (-0.0641, -0.3664, -0.1086, -0.3182)

b4 = (-0.3645, -0.1941, -0.1331, -0.3830)

0 = (-0.2327, -0.0301, -0.0613, 0.2470)

b6 = (-0.3909, 0.3732, -0.0953, -0.1953)

b7 = (-0.1478, -0.2652, -0.3996, 0.3307)

ba = (-0.2671, 0.3283, 0.0569, -0.3668)

Value of No. of major Final objective CPU time
alpha iterations function value (seconds)
1.1 4 5.2713 1.89
1.01 7 4.8017 2.77
1.001 13 4.7585 4.94
1.0001 14 4.7537 5.44
1.00001 15 4.7532 5.88
1.000001 16 4.7532 6.63

Table 3.1

Next we solve a number of problems in different dimensions, see Table 3.2. Again, all

components of the input data at and bt are i.i.d. U(-0.5, 0.5). a = 1.01, c = 1, and problem

dimension = [n2, L].

Problem No. of major Final objective CPU time
dimension iterations function value (seconds)

[16,6] 7 3.3775 2.9
[16,10] 8 5.9837 3.32
[36,8] 15 9.0326 25.18
[36,12] 17 14.1864 28.19
[64,12] 33 19.1114 219.29
[64,18] 26 29.6169 175.32

Table 3.2

A practical problem based on economic data was alko solved. It was quickly solved in

two major iterations.



Chapter 4

Semi-Infinite Programming

4.1 Introduction and Preliminaries

The primal problem (SIL) of semi-infinite linear programming is defined as

(SIL) minimize cT X

subject to

a(u)Tz - b(u) > 0 for all u E U,

where c, x C R', U C R"' is an infinite parameter set, a U R', and b: U -- R 1 . The

dual of (SIL) is: for all finite subsets {u i : i E A) of U

(SID) maximize itE, b(ui)yi

subject to

EiEA a(u')y, = c

A is finite and {u: i E A) C U

yi > 0 for all i E A .

We can always rewrite (SID) in the format of generalized linear programming (see

Dantzig (1963) Chapter 22) as follows:

32
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(GLP) maximize yo

subject to

poYO + py = q

p may be freely chosen from S

Y > 0,

where S = conv{(a(u) T ',-b(u))T : u E U), Pa = (0,...,0, 1), and q = (cT, O)T. Indeed, for

any {ui : i E A) C U with finite A and any {y, > 0 : i E A) satisfying Za a(u')y, = C,

let yo = 'iEA b(u')yi, Y = E'-a Yi > 0 (since c $ 0) and p = -,a(a(ui) T , -b(u')) T yj/y.

Then, p E S and poYo +py = q. Conversely, if pyo +py = q, where y _> 0 and p E S,

then there exist u E U and > 0 for i = 1,... t (t < n + 1) such that t 
1 A = 1

and p = - 1 (a(u)T, - b(ui))TA, (see, e.g., Rockafellar (1972) p.155). Let yj = Aiy _> 0 for

/ = 1, ... , t. Then, ' a(u')y, = c and yo = b(u')y,. Hence, (SID) and (GLP) are

equivalent.

The first algorithm for solving (GLP) and therefore (SID) was given by Dantzig and

Wolfe, see Dantzig (1963), Chapters 22 and 24, and Dantzig (1960). Starting with a non-

degenerate basic feasible solution of (GLP), the D-ntIzig-W1!fe lgcrithm solves (GLP) by

generating a pk with the smallest negative reduced cost at each iteration k and then solves

the new restricted master program. Although one can start this algorithm with any basic

feasible solution, the nondegeneracy of the starting basic feasible solution is required by the

convergence proof. How to find a starting nondegenerate basic feasible solution is still an

open question.

Gustafson and Kortanek proposed an algorithm, the alternating procedure, for solving

the primal semi-infinite linear program (SIL) (see Gustafson and Kortanek (1973)) under

the following assumptions:

(Al) U is compact,

(A2) a(u) and b(u) are continuous,

(A3) the feasible region of (SIL) is nonerupty,

(A4) the feasible region of (SIL) is contained in T, where T C R' is a nonempty
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polytope.

The alternating procedure solves (SIL) as follows: let x0 be an optimal solution of the linear

program

minimize c~z

subject to

xET.

At iteration k, if a(u)Tzk - b(u) >_ 0 for all u E U, then xk is an optimal solution of (SIL)

and the procedure is stopped. Otherwise, find

uk + E argmin{a(u)T X - b(u) : u E U}

and let x"+' be an optimal solution of the linear program

minimize cTX

subject to
a(u')Tx - b(u i )  _ 0 for all i = 1, ... , k + I

zET.

Under the above assumptions, Gustafson and Kortanek (1973) proved that cTz* = v(SIL),

where z* is a cluster point of the sequence xk generated by the alternating procedure and

v(SIL) stands for the optimal objective function value of program (SIL). The convergence

proof of the alternating procedure provided by them, however, is incomplete: they did not

prove the feasibility of z* (although it can be shown that x* is a feasible solution by the

same approach as the proof of Theorem 4.1).

Herein we present a one-phase algorithm for solving a large class of semi-infinite lin-

ear programs. This algorithm is based on Algorithm 2.1 and Algorithm 3.1 and can be

generalized to solve nonlinear semi-infinite programs. It has several advantages:

1. It handles feasibility and optimality together and thus elimirates the extra work of

finding a starting feasible solution that might be far away from an optimal solution.

2. It can detect infeasibility after a finite number of iterations.

3. It does not impose any restriction on U, a(u), and b(u), i.e., U could be any nonempty

set in R n , a(u) could be any vector in Rn, and b(u) could be any real number.
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4. The cut it generates at each iteration need not be the most violated cut or near the

most violated cut. The strength of the cuts can be controlled by a parameter.

5. It solves the primal and the dual programs simultaneously.

The rest of this chapter is organized as follows. In Section 4.2 we present an algorithm

for solving a large class of semi-infinite programs and prove its convergence in two steps.

First, we show that it can find an -optimal solution after finitely many iterations, and then

use this result to show that it can find an optimal solution in the limit. In Section 4.3

we prove a duality theorem and show that the algorithm solves the primal and the dual

programs simultaneously. In Section 4.4 we estimate how good an c-optimal solution is

compared to an optimal solution and give an upper bound on the total number of iterations

needed for finding an -optimal solution under certain assumptions. In Section 4.5 we show

that the algorithm can be generalized to solve a class of nonlinear semi-infinite programming

problems.

4.2 An Algorithm for Semi-Infinite Linear Programming

We first present a one-phase algorithm for solving the primal problem (SIL) of semi-infinite

linear programming that satisfies the assumption that the feasible region is contained in a

polytope T.

Algorithm 4.1.

Step 1 (Initialization).

Let k := 0;

let a be a constant such that 0 < a < 1;

let LP(0) be the linear program

minimize cT x

subject to

rET.

Step 2.

If LP(k) is infeasible, then (SIL) is infeasible, stop.
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Else, find an optimal solution zk of LP(k);

if a(u)Tzk - b~u) > 0 for all u E U,

then xk is an optimal solution of (SIL), stop.

Step 3.

Find a uk E U such that

either a(uk)Txk - b(uk) < -o

or a(uk)Tzk - b(uk) < a - inf{a(u)Tx k - b(u) u E U}

form LP(k + 1) by adding a cut, a(uk)T.r - b(uk) > 0, to LP(k);

k k + 1;

go to Step 2.

Comments on Algorithm 4.1.

(1) We assume that, given x k , there are algorithms that can find an approximate solu-

tion of the nonlinear program inf{a(u)TXk -b(u) : u E U). Namely, given any small positive

number 6, these algorithms can find a ii E U such that a(ii)Trk-b(ai) < inf{a(u)Tzk-b(u)

u E U) + 6.

(2) In Step 2, to test whether a(u)Txk - b(u) > 0 for all u E U, one can proceed as

follows: given a small positive number 6, find a & E U such that

a(fi)TXk - b(ui) < inf{a(u)TXk - b(u) : u E U) + 6.

If a( i)TXk - b(ii) >_ 6, then inf{a(u)TXk - b(u) : u E U) >_ 0 and xk is optimal. If

a(i)TXk - b(fi) < 0, then inf{a(u)TXk - b(u) : u E U) < 0 and one can go to Step 3.

Otherwise, 0 < a(fux)Txk - b(fi) < 6, which implies that inf{a(u)Tzk - b(u) : u E U) >_ -b,

and therefore, rk is an 6-optimal solution (see Definition 3.1 below). If one wants an exact

optimal solution, then one needs an algorithm that can find inf{a(u)Txk - b(u) : u E_ U)

starting from a 6-optimal solution.

(3) In Step 3, either there is a uk that satisfies a(uk)TXk - b(uk) < -a or else 0 >

inf{a(u)TXk - b(u) : u E U) > -a > -oo. In the latter case,

a inf{a(u)Txk - b(u) : u E U) > i|f{a(u)rxk - b(u) : u E U)( since a < 1),



Section 4.2 An Algorithm for Semi-Infinite Linear Programming 37

and hence there exists a uk E U such that

a(uk)TXk - b(uk) :_ a . inf{a(u)Txk - b(u): u E U}. (4.1)

To find a uk satisfying (4.1) by any algorithm that has the property stated in (1), a stopping

rule is
a(uk)Txk - b(uk) _ inf{a(u)Txk - b(u): u E U} + 6 and

6 < (a - l)a(uk)Txk - b(uk).

Indeed, if this rule is satisfied, then

6 < (at - 1)(a(uk)Trk - b(uk))

_< (a - 1) inf{a(u)TXk - b(u) : u E U),

and therefore,
a(u k)TX - b(uk) _ inf{a(u)Txk - b(u) : u E U) + 6

< a . inf{a(u)TXk - b(u) : u E U).

(4) The most violated cut a(u*)TXk-b(u*) >_ 0, where a(u*)Tzk-b(u*) = inf{a(u)TzXk-I

b(u) : u E U), may not exist. Even if it does exist, it could be in general very hard to find.

The parameter a specified in Step 1 controls the strength of the cut generated in Step 3.

When a is close to one, the cut is near the most violated cut when it exists. When a is

sufficiently close to zero, the cut is very weak, nevertheless the algorithm will still converge.

It is easy to see that, if Algorithm 4.1 stops at a certain iteration k, then it either finds

an optimal solution of (SIL) or detects the infeasibility of (SIL). We are now going to prove

that if the algorithm does not stop finitely, then any cluster point of the sequence Xk for all

k = 1, 2, ... generated in Step 2 is an optimal solution of (SIL).

Definition 4.1 (c-optimal solution). Let c > 0. A vector i is an c-optimal solution of (SIL)

if a(u)T i - b(u) > -E for all u E U and cT < v(SIL), where v(SIL) denotes the optimal

objective function value of (SIL).

Theorem 4.1. Suppose that {i(a(u),b(u))IK, : u G U) is bounded by k > 0 and that

the algorithm does not stop finitely. Let the sequence x', x2 , ... be generated by Step 2 of

Algorithm 4.1. Then,
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(a) (Finite c-convergence) For any c satisfying 0 < c < a, there exists an integer N(e)

such that zk is an -optimal solution of (SIL) for all k > N(E).

(b) (Convergence) Any cluster point of the sequence x', X2 , ... is an optimal solution

of (SIL).

Proof. Let W = {s E R "+ ' IIs o _j k} and G(x,y,z) = yTX - z, where z, y E R n and

z E R'. Then, G(x, y, z) is uniformly continuous on T x W. If (a) does not hold, then for

some 0 < E < c, N(E') does not exist. Therefore, the set J - {k : xk is not an E-optimal

solution of (SIL)} contains infinitely many integers. Let 1 = ac' > 0. By the uniform

continuity of G(x, y, z), there exists 6(qj) > 0 such that

jj(x, y, z) - (1, 9, i)I < 6(rj) implies that IG(x, y, z) - G(i, 9, i)j < q
(4.2)

for all (x,y,z) and (i, 9,;e) E T x W.

Since {(a(u),b(u)) : u E U} is bounded and J is infinite, we can find i, j E J with i < j

such that

j(xi, a(u'), b(u')) - (xi, a(uJ), b(uJ))Il - I1(a(u'), b(u')) - (a(uj), b(uJ))l
(4.3)< b(q).

Because i < j, we have

G(x' , a(u'), b(u' )) = a(u,)Tzj - b(u2 ) > 0. (4.4)

Because j E J and cT9 < v(SIL), there exists fi E U such that a(ii)TXj - b(fi) < -c' and,

thus, inf{a(u) T Xj - b(u) : u E LT} < -c'. Therefore, by Step 3 of the algorithm we have

either

G(xj, a(ua), b(u))) = (u)j _ b(uj) < -a < -q (4.5a)

or
G(xj , a(WJ), b(u')) = a(UJ)T Xj - b(u)

< .inf{a(u)rx) - b(u) : u E U) (4.5b)

< a(f = -?I.

However, (4.3), (4.4), (4.5a), and (4.5b) contradict (4.2). Consequently, (a) is proved.
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It remains to prove (b). Since the sequence xk , k - 1, 2, ... is bounded, it has at least

one cluster point. Let x* be a cluster point of this sequence. From (a) we know that for

any c satisfying 0 < cz < a and k > N(c) we have a(u)Tzk - b(u) -C for all u E U. Hence,

for any c satisfying 0 < c < a, we have a(u)T * - b(u) > -e for all u E U, which implies

that z* is a feasible solution of (SIL). To complete the proof, we need only to show that

cTa,* = v(SIL). First,we know that cT ,* > v(SIL) since x* is a feasible solution of (SIL).

Secondly, we know that cT Z' < v(SIL) holds for all k since the feasible region of LP(k)

contains that of (SIL). It follows that cT X* = v(SIL). [

Remark 4.1.

(1) We have proved that, if the algorithm goes on infinitely, then any cluster point

of the sequence aI, x 2 , ... is a feasible solution of (SIL). Therefore, if (SIL) is infeasible,

then the algorithm will detect infeasibility after a finite number of major iterations (i.e.,

Step 2-Step 3).

(2) Without loss of generality, we may always assume that {I(a(u), b(u))IIo : u E U} is

bounded. For we can pre-multiply (a(u), b(u)) by a positive number, e.g., II(a(u), b(u))I1- '

and the feasible region remains the same.

(3) We proved the convergence of Algorithm 4.1 without assuming the continuity of

a(u) and b(u), and without assuming the compactness of U. We are able to do so because

G(x, y, z) - y1T - z is uniformly continuous on T x W.

In the rest of this section, we discuss how to solve a semi-infinite linear program that

does not have the constraint a E T.

Suppose we know that for i 1 , ... , iil E U the linear program
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LP(O)' minimize cT X

subject to

a(iii)Tx > b(fi') for i = 1, ... , t

has an optimal solution. Then we can start the algorithm with LP(0)' as LP(0). Since the

feasible region of LP(k) contains that of LP(k+ 1), either LP(k+1) is infeasible or LP(k+1)

is optimal. Hence, Algorithm 4.1 can be carried out. If the algorithm stops finitely, then it

correctly solves the problem. Otherwise, a sequence x,, z2, ... will be generated. It is easy

to see that, if this sequence is bounded, then both (a) and (b) of Theorem 4.1 hold. If this

sequence is not bounded but has a cluster point, then (b) of Theorem 4.1 still holds and

(a) should be stated as

(a)' For any 0 < c < c, there exists an x' in this sequence such that x' is an c-optimal

solution of (SIL).

A sufficient condition that guarantees the boundedness of the sequence x', X2, ... was

given by Dantzig (see Dantzig (1963) pp.476-477) for the Dantzig-Wolfe algorithm. This

condition works for our algorithm after some minor modifications.

Lemma 4.1. Let DP(k) be the dual program of LP(k) for all k. If (SIL) is feasible and

a nondegenerate basic feasible solution exists for some DP(k), then the sequence z k is

bounded.

Proof. As in ordinary linear programming, if (SIL) is feasible, then v(SID) < +oo. Let

B k be the basis associated with a nondegenerate basic feasible solution of some DP(k)

and bk be the vector of corresponding cost coefficients. Then, by nondegeneracy, we have

(Bk)-c > 0. Let .t = (X')TBk - (bk)T for all i = 1, 2, . Since x' is feasible for LP(i)

and for all i > k the feasible region of LP(i) contains
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that of LP(k), we know that -1i > 0 for all i > k. Hence, for all i > k, we have

0 < 7'(B k)- 1c

= (zs)Tc - (bk)(Bk-1C

= v(DP(i)) - (bk)T(Bk)-IC

_5 v(SID) - (bk)T(Bk)- 1 c.

It follows that -1i is bounded and thus x' is bounded. I

Other simple sufficient conditions for the boundedness of xk or for the existence of a

cluster point of z k are:

Lemma 4.2.

(1) If a(u j ) < 0 for some uj generated by the algorithm and Xk > 0 for all sufficiently

large k, then the sequence z k is bounded.

(2) If a(uJ ) < 0 for some u. generated by the algorithm and xk > 0 for infinitely many

k, then the sequence z' has a cluster point.

(3) The assumption, a(uJ) < 0 for some uj generated by the algorithm, in (1) and

(2) may be replaced by : there exist uJ1, ... , uJ generated by the algorithm such that

a(ujl) < 0 for i =,..,I and ,-,a(uji) < 0.

Proof. (1). For all z k > 0 and k > j, we have, by the feasibility of xk, a(uj)Tzk > b(uj).

Therefore, x < b(uJ)/a(uJ), for all i = 1, ... , n and thus (1) is proved. (2) and (3) can be

proved similiarly. 3

4.3 A Duality Thoerem

It is well known that, if a primal linear program has an optimal solution, then its dual

program also has an optimal solution and the optimal objective function values of the

primal program and the dual program are equal. This nice property does not hold for all

semi-infinite linear programs (see, e.g., Dufiin and Karlovitz (1965)). Herein we show that
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if Algorithm 4.1 converges for a primai semi-infinite linear program, then there is no duality

gap between the primal program and its dual program and Algorithm 4.1 solves the primal

program and the dual program simultaneously.

Let DP(k) be the dual program of LP(k) for all k, where LP(k) is generated by Al-

gorithm 4.1, and yk be an optimal solution of DP(k). If at a certain iteration k, LP(k)

is infeasible, then by the duality theorem of linear programming, we have v(DP(k)) = 00.

Since the feasible region of DP(k) is a subset of that of (SID), we know that in this case

v(SID) = oo. If at a certain iteration k, zk is an optimal solution of (SIL), then by the

duality theory of linear programming, we have v(SIL) = cTxk = v(LP(k)) = v(DP(k)). On

the other hand, it is easy to show that v(SID) _< v(SIL). Since yk is a feasible solution of

(SID) and the objective function value of (SID) at y' is equal to v(SIL), it follows that yk

is an optimal solution of (SID). If Algorithm 4.1 generates an infinite sequence zk for all

k = 1, 2, ... with a cluster point z*, then we have

cTx k 
= v(LP(k)) = v(DP(k)) < v(SID) < v(SIL). (4.6)

Since the feasible region of LP(k) contains that of LP(k + 1), v(LP(k)) = cTzk is nonde-

creasing. Hence, we have limk-,, cTz k = cJx *. By Theorem 4.1, cTz* = v(SIL). It follows

from (4.6) that cTz * = v(SIL) = v(SID). Now suppose that the method used for solving

LP(k) in Step 2 can solve LP(k) and DP(k) simultaneously (e.g., the simplex method) and

Yk is an optimal solution of DP(k) generated by this method. Then, yk for k = 1, 2, ... is

a sequence of feasible solutions of (SID) on which the objective function tends to v(SID).

Thus, the following theorem is established.

Theorem 4.2. Suppose that Algorithm 4.1 convergences.

(1) If(SIL) is infeasible, then v(SID) = 00.

(2) If(SIL) has an optimal solution, then v(SIL) = v(SID).

(3) Algorithm 4.1 solves (SIL) and (SID) simultaneously. I

Corollary 4.1. Suppose that {(a(u), b(u)) : u E U) is compact, the feasible region of(SIL)
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has an interior point, v(SID) is finite, and Algorithm 1 converges. Then, v(SID) can be

attained.

Proof. Let i be an interior point of the feasible region of (SIL), then a(u)Ti > b(u) for all

u E U. As {(a(u), b(u)) : u E U) is compact, we know that there exists a positive number

0 such that a(u)Ti - b(u) > 0 > 0 for all u E U. Let yk be the optimal solution of DP(k)

generated by Algorithm 4.1 and Ak be the index set such that y, > 0 if and only if i E Ak.

If we solve LP(k) and DP(k) by the simplex method, then Ak contains no more than n

elements. Let IAki denote the cardinal number of Ak and yk = (y,,,... , y ,,... , 0) E

R', that is, the first IAkI components of Yk are y ', ... ,y1 and the rest are zero in

the case IA&( < n.

We claim that {Yk E R n : k = 1,2,... is bounded. Indeed,

0 E y < a(u')Tiyk - E b(u' )Yk

iEA iEAk iEA&

= _ v(DP(k))

= cTi -- cTX
k

<cT -- cT1.

Let Ak = (a(u'*i),... ,a(uik'&), 0,... ,0) E Rn xn and

bk = (b(u i'h ), ... , b(u'"lai), 0,... , 0)7  E Rn for all k = 1, 2, .... Then, we have

AkYk = c and (bL)TYk = v(DP(k)) for all k = 1, 2, .... Without loss of gener-

ality we assume that liMk_..Ak = (a(u'),... ,a(ujr),0,... ,0) = A*, limt--,,.bk =

(b(uj'),... ,b(uj,),O,... ,0) = b*, and liMk...oo Y k = (Y*,... ,Y,.*,0,... ,0) = Y*, where

r < n. Then, A*Y* = c, (b*)TY* = v(SID), and thus, yi, = Yl*, ... , yj, = Y*, y. = 0 for

all i {jl,... ,r is an optimal solution of (SID). I

4.4 Estimation of Upper Bounds

We have shown that for any c satisfying 0 < c < ot, the algorithm can find an -optimal

solution of (SIL) after finitely many iterations (Theorem 4.1). Now we estimate how good
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an -optimal solution is compared to an optimal solution. In this secLion, we assume that

U is compact, a(u) and b(u) are continuous on U, and the feasible region of (SIL) is n-

dimensional. First, we state two lemmas that we are going to use in the following discussion.

Lemma 4.3A (Hoffman). Let A be an (mxn)-matrix and b an m-vector. If Ax > b has

a solution, then there exists a constant r such that for any x C R', there exists an x'

satisfying

Ax 0 > b and II - z'11 -< rjj(Az - b)-I1,

where (Ax - b)- stands for the negative part of the vector (Ax - b), see h1offman (1952). m

Lemma 4.3B. If { (a(u), b(u)) :u E U) is compact and F = {x E RI : a(u)Tz > b(u) u E

U) is n-dimensional, then a given halfspace (a*)x > b (where a* ik 0) contains F if and

only if there exist u' E U and Ai > 0, i = 1, ... , t (where t < n) such that

A, a(ul ) +...- + Aja(u') =a*

and

A\b(ul) +... + Agb(u') b.

(see, e.g., Rockafellar (1972), p.160.) I

Definition 4.2. Let g : F -- Rn. A vector x E F is a stationary point of the pair (F, 9) if

XT g(x) .5 yTg(x) for all y E F.

Suppose that zk is an -optimal solution of (SIL). Consider an auxiliary program

(P) min{IIz - Xk1 2 : a( t)T X - b(u) 0 for all u E U).

Let x* be the optimal solution of the auxiliary program (P). It is easy to see that x* is

a stationary point of (F, V11z - x kj2), where F = {x E R' : a(u)T x > b(u) u E U} and

VJIX - zkf12 = 2z - 2zk is the gradient of 1jz - ZkI2 . Therefore, the halfspace

2(x* - >k)TX > 2(z* - xk)Tx *

r I I-
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contains F. It follows from Lemma 4.3B that there exist u' E U and Ai > 0, i = 1, ... , t

(where t < n) such that

Ala(u l ) +.. + \ja(ul) 2(x* - zk)
(4.7a)

\Ib(u') + + Ab(u') > 2(x* - k)TX
*

We claim that

a(u6)x* = b(u) for i = 1,... ,t. (4.7b)

If not, say, a(ut)Tz* > b(u') for i = 1, ... , r, and a(ua)Tx* - b(u') for i = r + 1, ... , t.

Then, we have

2(x" - xk) T). T * Aia(u)Tx*

t=> \j b(u' )

> 2(x* - xk) Tx ,

which is a contradiction. Thus (4.7b) is proven. Since lix - xk112 is a convex function of z,

(4.7a) and (4.7b) imply that x* is an optimal solution of the following program:

P(k) min{Ijx - xk112 : hkX > bk},

where Ak = (a(u'),..., a(u 1 )) T and bk = (b(u 1),..., b(u'))T. Applying Hoffman's Lemma

to the finite system of linear inequalities AkX > bk, we know that there exists a constant r

and an z' satisfying

AkX" > bk and Ikxk - x'11 < rlj(Akxk - bk)-Ij. < TE.

Because x* is an optimal solution of P(k) and x" is a feasible solution of P(k), we have

IIxk - x*lI _ IIx' - x,1l !5 TE

and therefore,

IcTXk - cTX*I < rellcil and - rellcl + crT* < cTfk < v(SIL) < cTX* .

Thus, the following theorem is proved.
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Theorem 4.3. The distance between an E-optimal solution and the feasible region is no

greater than rc, and the difference between the objective function value of an c-optimal

solution and the optimal objective function value is no greater than rclIcII. I

There is a simple way to estimate c for the k-th approximate solution xk such that xk

is an c-optimal solution. Suppose that

a(u k)TXk - b(uk) <a . inf{a(U)TXk - b(u): u E U}

of Step 3 holds for xk and uk. Let

wk - min{I(a(ui)Txk - b(u')) - (a(u")TXk 
- Uk))1}.

i<k

T kx ukxTk b(Uk))t

Since a(u')zk - b(u') > 0 for all i < k, we have a(uk)Txk - b(uk) > . This implies

that inf{a(u)T Xk - b(u) u E U} > -wt - 1 , i.e., x kis a (wka-)-optimal solution.

Finally, we give an upper bound of the total number of iterations needed for finding

an f-optimal solution. We need the following assumptions:

(A5) a(u) and b(u) are Lipschitz continuous on U with Lipschitz constants L 2 and L3

respectively, i.e., Ila(u) - a(5)I< L2 1Ju - 1i1l and Ib(u) - b(ii)f :< L.Ilu - fill for all u, i E U.

(A6) (jzkf( _5 K for all k - 1, 2, ... , where zk is generated by Step 2 of Algorithm 1.

(A7) Every cut, a(uk)TX - b(uk) _ 0, generated by Step 3 of Algorithm 1 is the most

violated cut.

Lemma 4.4. If assumptions (A5) and (A6) are satisfied and a(fi)TXk - b(5) : 0, then

a(u)Tz - b(u) > -e for all u that satisfies Ilu - ill < E(L2 K + L,) - '.

Proof.

Ia(u)Tzk - b(u) - (a(i)TX k - b(fi))I Ila(u) - a(1)llIllZkll + lb(u) - b(i)l

< (L 2K + L3)lu - fil

<C. I
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Let B,(u, r) denote the m-dimensional Euclidean ball with center u E R ' and radius

r. If x is not an c-optimal solution, then a(uk)Txk - b(uk) < -c (by (A7)). Since

a(u )TXk - b(u') 0 for all i < k, we have, by Lemma 4.4,

k-!

uk U B,(u',E(L2 K + L)'). (4.8)
i=1

On the other hand, since U C R" is compact, we can find a box Q C R' containing

U. Let 3 be the side length of Q and M be the smallest integer that is greater than

Vm/ftI/(e(L 2 K + L3)-'), i.e.,

M = [vrn4 1/(c(L2 K + L)-)] + 1.

Let us divide Q into Mn subboxes of the same m-content, Q', i = 1, ... , M', satisfying

int(Q') n int(Qj) = for all i 5 j, where int(Q') denotes the interior of Q'. For every uk

generated by the algorithm, we can find a subbox Q'k containing uk. Since the diameter of

Q'k is vrfl/3fM and V/m-0/M < e(L 2 K + L.) - I, we have

Brn(Uk,c(L 2 K + L 3 )-') D Qik. (4.9)

From (4.8) and (4.9) we know that uk Uj_- Q'i and Qk {Q,..., - Conse-

quently, the following theorem is established.

Theorem 4.4. If assumptions (A5),(A6), and (A7) are satisfied, then an upper bound of

the number of major iterations needed for finding an c-optimal solution is: ([J/if5/(f(L2 K+

L)-')] + 1) . I

4.5 Nonlinear Semi-Infinite Programming

We now show that Algorithm 4.1 can be generalized to solve the following nonlinear semi-

infinie program
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(SIN) minimize f(z)

subject to

9(x, u) > O, for all u E U

z E S,

where U and S are nonempty compact convex sets, f(x) is continuous on S, and g(z, u) is

continuous on S x U.

Definition 4.3 (c-optimal solution). Let c > 0. A vector i is an -optimal solution of

(SIN) if g(i,u) > -c for all u E U and f(i) !5 v(SIN), where v(SIN) denotes the optimal

objective function value of (SIN).

Algorithm 4.2.

Step 1 (Initialization).

Let k := 0;

let a be a constant such that 0 < a < 1;

let NP(0) be the nonlinear program

minimize f(r)

subject to

r E S.

Step 2.

If NP(k) is infeasible, then (SIN) is infeasible, stop.

Else, find an optimal solution xk of NP(k);

if g(Xk,u) > 0 for all u E U,

then zk is an optimal solution of (SIN), stop.

Step 3.

Find a u' E U such that g(xk' Uk) < a.inin{g(xk,u) u E U);

form NP(k + 1) by adding a cut, g(z, u) 2 0, to NP(k);

k k + 1;

go to Step 2.
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Notice that the convergence proof of Algorithm 4.1 is based on the uniform continuity

of G(z, y, z) on T x W, and now g(z, u) is uniformly continuous on S x U. It is easy to see

that the following theorem holds.

Theorem 4.5. Suppose that U and S are compact, g(z, u) is continuous on S x U, and

the algorithm does not stop finitely. Let the sequence z 1, X2, ... be generated by Step 2 of

Algorithm 4.2. Then,

(a) (Finite c-convergence) For any e satisfying 0 < e < a, there exists an integer N(f)

such that z" is an -optimal solution of (SIN) for all k > N(c).

(b) (Convergence) Any cluster point of the sequence z1, Z2, ... is an optimal solution

of (SIN). I

Remark 4.2. If NP(k) is a difficult nonlinear program to solve, one might want to find

instead an i such that g(i, u) _ -c for all u E U and f(i) _ v(SIN) + 6, where 6 > 0. In

this case, the optimal solution z k of NP(k) generated in Step 2 of Algorithm 4.2 may be

replaced by any ik that is feasible for NP(k) and that satisfies f(s) v(NP(k)) + 6.



Chapter 5

Applications to Convex Programming

5.1 Introduction

The idea of solving an ordinary convex program by semi-infinite linear programming comes

from Dantzig (1963) Chapter 24. There he showed how to solve an ordinary convex program

by generalized linear programming. Ilis algorithm starts with a feasible solution of the

convex program that provides a nondegenerate basic feasible solution for an initial restricted

master program and then generates and solves a sequence of linear programs. As we have

seen in Chapter 4, a generalized linear program can be considered as a semi-infinite linear

program of the dual type. We now show how to apply Algorithm 4.1 to a certain semi-

infinite linear program so as to obtain a feasible solution of the convex program. Using this

feasible solution as a starting point, we then apply Algorithm 4.1 to another semi-infinite

linear program and obtain an optimal solution of the convex program. In particular, for a

strongly consistent convex program Algorithm 4.1 can find a feasible solution after a finite

number of iterations.

50
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5.2 Feasibility

We want to find a feasible solution of the convex program

(CP) minimize f(x)

subject to

gi() < 0 for i = 1, ... , m

x E T,

where T C R ' is a polytope, and f(x) and g,(x) for i = 1, ... , m are real valued convex

functions on R'.

First, we construct a semi-infinite linear program whose optimal solutions can provide

feasible solutions to (CP).

Let G(z) = (1, -gi(x),...,-g,(x))T and e' be the i-th unit vector in Rm+l. Consider

the following dual pair of semi-infinite linear programs:

(SL) maximize e1T y

subject to

G(z)Ty < 0 for all x G T

0<yi< Ifor i= 2, ... , rn+ 1,

and for all finite subset {xI : i E A} of T

(SD) minimize s, + ... + s..

subject to

ZiEa G(x')Ai - E... e'+1i, + ea+ls,=el

A, > 0 for all i E A

pi, s, > 0 for i = 1, ... , .

Lemma 5.1. Algorithm 4.1 converges for (SL) and (SD), and v(SL) = v(SD).

Proof. Let us pick any a0 E T and start. Algorithm 4.1 with the linear program
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LP(0) maximize eITy

subject to

G(x°)T y _ 0

0< ifor i=2, ... , m+ 1.

It is easy to see that LP(0) has an optimal solution. Then, Algorithm 4.1 generates a

sequence of linear programs

LP(k) maximize elTy

subject to

G(x' )Ty 0 for i = 0, 1, ... , k

0<yi 1 fori= 2, ... , r+ 1,

where x' E T for i = 0, 1, ... , k. The dual of LP(k) is

DP(k) minimize s, + ... + s

subject to

T-i=. G(x')At, - Ent 1 , + - e+ s, =e

At>0fori=0, 1,...k

Mi, si > 0 for i = 1, ... , m.

Let yA: be the optimal solution of LP(k) and (Ak, , sk ) be the optimal solution of

DP(k) generated by Algorithm 4.1. To show that Algorithm 4.1 converges for (SL) and

(SD), we only need to show that yk for k = 0, 1, 2, ... is bounded. Indeed, by the duality

theorey of linear programming, we have

y I= e T Yk = sk +...+sk >0

On the other hand, since yk is a feasible solution of LP(k), we have
m

k4 < g,(x,)y +"" + g.,(,, )yi+ < Z jgz)l •

Hence, y' for k = 0, 1, 2, ... is bounded. Let y* be a cluster point of the sequence yk.

Then, by Theorems 4.1 and 4.2, we know that Algorithm 4.1 converges for (SL) and (SD)

and v(SL) = v(SD).i
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Lemma 5.2. (CP) is feasible if and only if v(SD) = 0.

Proof. If (CP) is feasible, i.e., there exists an r' E T satisfying gi(x') < 0 for i = 1,
m, let A = {11, A' = 1, p! = -9i(x ) > 0 for i = 1, ... , m, and s! = 0 for i = 1, ... , m.

Then, we have

. +a s =0.
t=1 i=1 e-.1

Since v(SD) > 0 and we have a feasible solution of (SD) whose objective function value

attains zero, we know that v(SD) = 0. Conversely, if v(SD) = 0, then by Lemma 5.1 we

have

lim v(DP(k)) = t'(SD) = v(SL) = 0.

First, let us consider the case v(DP(k)) = 0 for some k. Let (Ak,pk,sk) be the optimal

solution of DP(k) generated by Algorithm 4.1 and it - = O R x= . By the feasibility of
Awe have k 0 and )-_ Ak - 1, and thus T. By the convexity of gj(x) and the

feasibility of (Ap, s), we have (for all j = 1, ... , m)

k

i=0

k

i=0
k

<0.

Namely, k is a feasible solution of (CP). Now let us consider the case v(DP(k)) > 0 for all k

and limkoo v(DP(k)) = 0. Let (Ak,pk, sk) be the optimal solution of DP(k) generated by

Algorithm 4.1, and 1:-=0 A~x ' E T for all k = 0, 1, . Since Ek, sk <Ek, so and
sk > 0 for all k, the sequence sk is bounded. Therefore, the sequence P= k 0 G(x')A +s t

is bounded. As T is convex and compact, we know that the sequence i k has a cluster point

X*. Without loss of generality, we assume that i -. x*, pk -* p*, and sk --+ s*. Then, by
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the convexity and continuity of gj(x) and the feasibility of (A", p', s"), we have

gj(x*) = gj( iin ik)

= lirn g(W)L'-'.o

k

i=n

= lr (-uk + sk)
k-o

<0.

Hence, z* is a feasible solution of (CP). I

So far we have shown how to find a feasible solution of (CP) by applying Algorithm 4.1

to (SL) and (SD). If (CP) has a feasible solution, then in the case v(DP(k)) = 0 for some k,

ik is a feasible solution of (CP) and Algorithm 4.1 stops finitely; otherwise, v(DP(k)) --+ 0 as

k ---+ oo and hence, for any c > 0, there exists a number N(c) > 0 such that 0 < v(DP(k)) <E

for all k > N(E). This implies that for all k > N(e), we have

k
gj(ik) < E Agj(x') = -P + s < C.

That is, for any e > 0 Algorithm 4.1 can find an x that satisfies gj(z) < E for all j = 1,

m after a finite number of iterations. If we know that there exists a feasible solution X* of

(CP) and a small positive number 6 such that gj(x) < -6 < 0 for all j = 1, ... , m, then

let jj(x) = gj(z) + 6. As we have just shown, for c = 6/2 > 0, Algorithm 4.1 can find an

i that satisfies #j(i) < c after finitely many iterations. Since j(z,) = gj(f) + 6, we have

gj(i) <_ -6/2 < 0 for all j = 1 ... , m. Thus, the following lemma is established.

Lemma 5.3. If gj(z) < 6 for all j = 1, ... , m has solutions, where 6 is a small positive

number, then Algorithm 4.1 can find a feasible solution of (CP) after a finite number of

iterations.

5.3 Optimality

We have seen how to find a feasible solution of a convex program (CP) by solving a semi-

infinite linear progeram (SD). Now we show how to find an optimal solution of (CP). Let
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O ) (1,g(z),... ,g(Z))T and ei be the i-th unit vector in Rm+l. Consider the dual

pair of semi-infinite linear programs:

(CSL) maximize elTy

subject to

O(x)Ty _ f(z) for all x E T

Yi <0for i= 2, ... , m+ 1,

and for all finite subset {x i : i E A) of T

(CSD) minimize -i a f(Xi)Ai

subject to

Eir=A G(z')Ai + e'+' = el

Ai > 0 for all i E A

pi > 0 for i- 1, ... , m.

Lemma 5.4. If(CP) is strongly consistent, then Algorithm 4.1 converges for (CSL) and

(CSD), and v(CSL) = v(CSD).

Proof. Find an x° satisfying gi(x 0 ) < 0 for i = 1, .... m and start Algorithm 4.1 with the

linear program

LP(0) maximize eI y

subject to

O(X) Ty _ f(1)

yi < 0 for i=2, ... , n+1.

It is easy to see that LP(0) has an optimal solution. Then, Algorithm 4.1 generates a

sequence of linear programs

LP(k) maximize el TY

subject to

G(za)r V _< f(x') for i =,1, ...0 k

y<0fori=2,...,i+1,
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where z' E T for i = 0, 1, ... , k. The dual of LP(k) is

DP(k) minimize E= f(Xj) "\i

subject to
k

2EL.0 G(z)A 1 + E' 1  
-~p =e

Ai> 0 for i=0, 1, ... ,k

p,>0fori= 1,...,rn.

Let y k be the optimal solution of LP(k) and (A k,Ak, s') be the optimal solution of

DP(k) generated by Algorithm 4.1. We want to show that the sequence yk is bounded. By

the optimality of yk and convexity of f(x), we have

k &IT k k
= eyk = "/(x')Ak _< ' If(x')IA k < max If(x)I, and

i=O i=O----

Thus, y' is bounded. By the feasibility of yk, we have

S+g (X)y2 + + g9( 0 ),1+1 < f(z 0 ).

Since gi(zo) < 0 for all i = 1, 2, ..., m andy < 0 for all i = 2 ..., m + 1, we have (for

all k = 0, 1,...)

Y+ > (f(z) - y1)/gj(z0 ) for i = 1,... , m.

Thus y k is bounded and Algorithm 4.1 converges for (CSL) and (CSD). U

Remark 5.1. If yk is an optimal solution of (CSL), then ik = "]kO A z' ia an optimal

solution of (CP). If Algorithm 4.1 converges in the limit, then any cluster point of the

sequence ij = -=0 Akx is an optimal of (CP) (see Dantzig (1963) Chapter 24).

Remark 5.2. Suppose that (CP) is not strongly consistent and that one can find zi E T

i = 1, ... , m satisfying gj(z') < 0 for all i = 1, ... , in and j = 1, ... , m, and gi(zx ') < 0 for

all i = 1, ... , m. Then, Algorithm 4.1 converges for (CSL) and (CSD) (see Lemma 4.2).
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SOL 89-2:
Semi-Infinite Programming, by Hui Hu

Semi-Infinite programming, that allows for either infinitely many constraints or infinitely many
variables but not both, is a natural extension of ordinary mathematical programming. There are many
practical as well as theoretical problems in which the constraints depend on time or space and thus can
be formulated as semi-infinite programs. The focus of this dissertation is on formulating and solving
semi-infinite programming problems. The main results include:

(1) An algorithm for solving a matrix rescaling problem formulated as a semi-infinite linear pro-
gram. Sufficient conditions that guarantee finite termination are discussed and computational results
are reported.

(2) An algorithm for solving a matrix estimation problem equivalent to a semi-infinite quadratic
program. For a specified constant, this algorithm will find an approximate solution after finitely many
iterations, or will tend to an optimal solution in the limit. An upper bound on the total number of
iterations needed for finding an approximate solution is given. Computational results are reported.

(3) A one-phase algorithm for solving a large class of semi-infinite linear programming problems.
This algorithm has several advantages: it handles feasibility and optimality together and can detect
infeasibility after a finite number of iterations; it has very weak restrictions on the constraints; it
allows cuts that are not near the most violated cut; and it solves the primal and the dual problems
simultaneously. Upper bounds for finding an c-optimal solution and for the distance between an f-
optimal solution and an optimal solution are given.

(4) Applications of the above algorithm to convex programming. First, a certain semi-infinite linear
program is solved by this algorithm so as to obtain a feasible solution of a convex program. Then,
another semi-infinite linear program is solved by this algorithm so as to obtain an optimal solution
of the convex program. In particular, it is shown that for a strongly consistent convex program this
algorithm can find a feasible solution after a finite number of iterations.
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